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AKWRACT 

Some approximate formulas are developed for errors arising from the application 
of iterative unfolding to experimental measurements. For the practical case of a 
dominantly diagonal response matrix of large order, it is shown that the relative error 
of the unfolded solution is approximately that of the original measurement. To 
demonstrate this behavior, actual experimental results from a proton-recoil proportional 
counter detection system have been included. 

I. INTRODUCTION 

The matrix formulation of the unfolding problem for detection systems is well 
known [l] and within this framework iterative unfolding has been considered in 
detail [2]. Applications of iterative unfolding to detection system problems in the 
nuclear sciences have been numerous [3]-[lo]. The development of some simple 
error estimates that accrue from the iterative unfolding process are therefore of 
interest. 

Elements of the output vector of a given detection system (e.g. the measured 
spectrum) will possess random statistical error. This fact implies the existence of 
random error in the iterative solution (i.e. the input vector). Expressions and 
estimates for this error are desirable. It must be emphasized at the outset that the 
present treatment will be applicable only within the context of two important 
assumptions. To begin with, one must assume that the iterative unfolding method 
furnishes appropriate solutions for the given detection system of interest [2]. 
In the event appropriate solutions cannot be found, the method of iterative 
unfolding fails to determine the desired physical solutions and for such cases error 
estimates cannot be regarded as meaningful. It will also be assumed that the 
response matrix is an exact representation of the systematic behavior of the 

1 Work performed under the auspices of the U.S. Atomic Energy Commission. 
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detection system and therefore does not possess random statistical error. In many 
instances, this latter assumption is justified since the actual random error in the 
response matrix is negligible compared with that of the output vector. 

II. ANALYSIS 

Let the matrix representation of the detection system take the form [l] 

Y = AX, (1) 

where A is the response matrix (of order n) and Y is the output vector. In addition, 
let E represent the random error of the output vector Y. Hence, one need generally 
consider systems of the form 

Y+E=Y’=AX. (2) 

Application of iterative unfolding for Eqs. (1) and (2) will lead to, under rather 
broad physical conditions [2], the convergent sequences {Y(“)} and {Y(m)‘}: 
respectively. Namely, 

lim Ytm) = Y, m-xc 

+l& Ycm) = Y’ = Y + E. 

Pa) 

(3b) 

It follows from Eqs. (3a) and (3b) that E also represents the random error in 
Ycm), for sufficiently large m. In other words, any given iterate Ycm), for sufficiently 
large m, possesses the same random statistical behavior attributable to the output 
vector Y. As an example, consider the case where the output vector Y is governed 
Poisson statistics. This assumption is commonly employed for many-particle 
detection systems and counting experiments that arise in nuclear measurements. 
For this case, the variance Sii = yi , i = 1,2 . . . it. In this event, the variance 
$l(m) of vi”’ is given by S,2i(m) = yj”’ = Sti = yi , i = 1,2 .., n, for sufficiently 
large m. 

The variance S:,(m) of any given element xjrn), in the iterative solution Xtm), 
can be calculated directly from the matrix relation 

y(m) = AX(m). (4) 

One finds 

S&Cm> = i [(a-3ij12 S&Cm), i = 1, 2 . . . n, 
j-1 

(54 
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and therefore, for sufficiently large m, 

where (~-1)~~ are the elements of the inverse matrix, A-l. For the case of Poisson 
statistics, Eqs. (5a) and (5b) become 

%i(m) = i WYij12 $m), i = 1, 2 . . . n, 
j=l 

and 

sEi(m) = i KOjj12 yj , i = 1, 2 . . . n. 
j=l 

(64 

(6b) 

These expressions are cumbersone and difficult to employ since they involve 
elements of the inverse matrix, A-‘. Consequently, a less precise but more useful 
result, not involving A-l, will be developed below. This analysis is based on the 
observation that most response matrices possess dominant diagonal elements and 
relatively small off-diagonal elements. Moreover, for diagonal response matrices, 
it follows from Eqs. (4) and (5a) that the relative error in the elements of Xcrn) 
is identical with that of the corresponding elements of Y(“J, hence Y. Therefore, 
one may qualitatively infer for dominantly diagonal response matrices that the 
relative error in the elements of Xfrn) is approximately that of the corresponding 
elements of Y. 

To establish this conjecture rigorously, let the matrix A be partitioned in 
the form 

A = Ad + -40, (7) 

where the matrices Ad and A,, are defined as 

(A& = aii , i = 1, 2 . . . n, 
(A&j = 0, i #j, i,,j = 1, 2 . . . n I @a) 

(AO)ji = (&)ij = 09 i = 1,2 . . . n, 
(Ao)ij = (ao)ij = ~ij 7 i #A i, j = 1, 2 . . . n. I (8b) 

Consequently, Ad is simply a diagonal matrix whose elements coincide with the 
diagonal elements of A and the matrix A,, contains the remaining off-diagonal 
elements of A. 
Taking differentials in Eq. (4) and using Eq. (7) one finds 

tiY = (A + Ao) SX. (9) 
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Since it has been assumed that m is sufficiently large to have established convergent 
results, the superscript m of the vectors X(pIO and YCm) has been omitted. In Eq. (9), 
the differential vector SY can be identified with the random error vector E, i.e., 
Sy, == ei , i = 1, 2 . . . IZ. Let us form the ensemble average (6~~ . SY~+~), using the 
representation given in Eq. (9). The quantities Sy, and SY~+~ are independent 
random variables, one therefore has 

which leads to 

Since the off-diagonal elements of response matrices are no larger than IZ-l, 
it is clear that the right-hand side of Eq. (lob) will become negligible for sufficiently 
large n. This conclusion is based on physical conditions implied by the matrix 
representation of the detection system. Namely, the physical description implies 
that the correlation between any two elements xt and x, decreases as / i - G 1 
increases. It follows that the correlation between SXi and 6x, is even a more rapidly 
decreasing function of 1 i - 8 (. One may therefore assume that the quantities 6x+ 
are independent random variables for sufficiently large 12. 

The validity of this assumption can also be demonstrated by using the relation 

to obtain a direct comparison of ((SX~)~) and (Sxi .6x!). One finds 

and 

<@xd2) = i WIM” <@YJ2>1 
i=l 

(124 

(6X< . Sxe) = i (a-‘),j (u-l)& ((Sy$). 
j=l 

(12b) 

Introducing appropriate mean values, md2 and m 02, for the set of variances ((6~~)~) 
which appear in these expressions, one has 

<(W2> = m2 i W1h12, 
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and 

(Sxi . 6x!) = mo2 5 (~2-l)~~ (&)J~ . 
j=l 

Wb) 

The resulting summations which appear in Eqs. (13a) and (13b) now have a simple 
interpretation. In particular, these sums represent elements of the matrix 
A-l * J-1 = (AA)-? c onsequently one can write 

((SxiY> = md21(~4-11ji , (144 
and 

(6x, - 6~~) = m,2[(AA)-1]i,. (14b) 

It follows from Eqs. (14a) and (14b) that ((8~~)~) > I(Sxi . xt)l for dominantly 
diagonal response matrices. Moreover, Eq. (14b) establishes the nature of the rapid 
decrease in (Sxi * 6~~) with increasing 1 i - G I. Thus, when A is dominantly 
diagonal so is A-l. Furthermore for A dominantly diagonal AA will be even more 
dominantly diagonal. Consequently, as one moves away from the dominant 
diagonal, the off-diagonal elements of (&t-l can be expected to decrease quite 
rapidly. 

Calculation of the variance of yi can be significantly simplified by employing 
this result. Equation (9) yields 

Using once more the fact that off-diagonal matrix elements, (a& , vanish at least 
as rapidly as n-l, Eq. (15) reduces to the approximate condition 

for sufficiently large n. One can therefore write 

(W2Y2 ~ Yi <@Yi>2>“2 
Xi aiixi Yi * (17) 

Hence, for dominantly diagonal response matrices of sufficiently large order, the 
relative error in an element xi E X is approximately equal to the relative error in 
the corresponding element yi E Y. For the case of Poisson statistics, Eq. (17) 
reduces to 

((SXj)2)1~2 g (yjyqajj . (18) 
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Some mention can be made of relaxing the condition that the response matrix 
be dominantly diagonal. In order to establish the (approximate) independence of 
the random variables (6x,}, this condition may be too conservative for many 
applications. This observation is based on the behavior of the exact solution, 
X = A-lY, which is invariably beset with violent and unphysical oscillations. 
It follows that the elements of the inverse of a response matrix will generally be 
both positive and negative. One can therefore anticipate a great deal of cancellation 
in the sum of Eq. (13b) for sufficiently large n. Consequently, the condition, 
((8~~)~) > 1(6x5 6x,) 1, may actually hold in many applications under less restrictive 
assumptions. In this event, Eq. (15) provides the basis for a matrix representation 
of an unfolding problem for the error estimates, namely 

S, = BS,, (1% 

where the elements of the vectors S, and S, are the variances {((6yJ2)} and 
{((SX~)~)}, respectively. The matrix elements bij of B are defined by 

bij = (au)” i,j = 1, 2 . . . II. (20) 

This new unfolding problem is an analog of the original unfolding problem. 
Moreover, iterative unfolding is directly applicable since all pertinent physical 
conditions are obviously met [2]. The essential feature of this error estimate 
unfolding problem is that the new response matrix elements are merely the square 
of the elements in the original response matrix [cf. Eq. (2O)].2 For such cases, 
iterative unfolding can be employed, in principle, to determine error estimates and 
thereby one may again avoid the problems associated with both calculating and 
employing inverse matrix elements. 

III. APPLICATION 

The simple conclusion concerning the approximate preservation of the relative 
error can be readily demonstrated. The data displayed in Fig. 1 represent iterative 
unfolding results for an actual experimental case. For this system, the Y vector 
is the pulse-height distribution arising from the ionization of fast neutron-induced 
recoil protons in a hydrogen-filled proportional counter. The response matrix in 
this application is an approximate representation of so-called “wall-and-end-effect” 
distortion. Thus, the measured spectrum (or Y vector) contains recoil-proton 
events which leave the finite sensitive volume of the detector and thereby do not 

2 Here, the applicability of Poisson statistics would imply an even closer analogy, since it 
follows that S, = Y for Poisson statistics. 
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register the full ionization (or equivalent pulse-height) that normally corresponds 
to the event. Iterative unfolding yields the distortion-free solution X depicted in 
Fig. 1. This solution represents the infinite-medium proton-recoil spectrum that is 
desired, i.e. that spectrum attained in the limit of infinitely large sensitive volume. 
A more detailed account of this system can be found in Ref. [lo]. 

PULSE-HEIGHT CHANNEL NUMBER 

FIG. 1. Comparison of a proportional counter proton-recoil ionization spectrum Y and the 
distortion-free solution X obtained by iterative unfolding. 

Table I presents the lower corner of the response matrix. It can be seen that this 
response matrix is dominantly diagonal and of large order. Hence, the approx- 
imations introduced above are fulfilled. 

For this detection system, the spectrum Y arises from a nuclear counting 
experiment; consequently the elements of Y are governed by Poisson statistics. 
This behavior can be seen in Fig. 1. Here the monotonically decreasing nature of 
the measured Y spectrum with increasing pulse-height channel number gives rise 
to a random (Poisson) relative error which grows with increasing channel number. 
Inspection of Fig. 1 reveals that the statistical behavior of X mirrors almost 
precisely the random fluctuations in Y and thereby conclusively demonstrates that 
the relative error has been little affected by the iterative unfolding process. 
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TABLE I 

RESPONSE MAT~UX (LOSER CORNER) 

Row 

Column No. 

No. 94 95 96 
___- 

78 2.4215 - 003 2.6248 - 003 2.8200 - 003 
79 2.2881- 003 2.4994 - 003 2.7047 - 003 
80 2.1514-003 2.3694 - 003 2.5835 - 003 
81 2.0116-003 2.2348 - 003 2.4566 - 003 
82 1.8687 - 003 2.0959 - 003 2.3239 - 003 
83 1.7231- 003 1.9527 - 003 2.1856-003 
84 1.5749 - 003 1.8055 - 003 2.0417 - 003 
85 1.4244 - 003 I .6544 - 003 1.8925 - 003 
86 1.2716-003 1.4998 - 003 1.7383 - 003 
87 1.1170-003 1.3419-003 1.5792-003 
88 9.6060 - 004 1.1810-003 1.4157 - 003 
89 8.0276 - 004 1.0174-003 1.2481- 003 
90 6.4369 - 004 8.5151 -004 1.0769 - 003 
91 4.8364 - 004 6.8362 - 004 9.0247 - 004 
92 3.2284 - 004 5.1413 - 004 7.2532 - 004 
93 1.6155-004 3.4343 - 004 5.4595 - 004 
94 1.9563 - 001 1.7192-004 3.6491 - 004 
95 o.oooo + 000 1.9021 - 001 1.8274 - 004 
96 o.oooo + 000 0.0000 + ooo I .8480 - 001 
97 o.oooo+ooo o.oooo + 000 o.oooo + 000 
98 o.oooo + 000 o.oooo + 000 o.oooo + ooo 

97 98 

3.0039 - 003 3.1732 - 003 
2.9005 - 003 3.0835 - 003 
2.7903 - 003 2.9862 - 003 
2.6732 - 003 2.8810 - 003 
2.5491- 003 2.7676 - 003 
2.4180 - 003 2.6460 - 003 
2.2799 - 003 2.5162-003 
2.1350-003 2.3780 - 003 
1.9835-003 2.2318 -003 
1.8257 - 003 2.0777 - 003 
1.6618-003 1.9159-003 
1.4924 - 003 1.7470 - 003 
1.3178-003 1.5712-003 
1.1385 - 003 1.3893 - 003 
9.5520-004 1.2018-003 
7.6843 - 004 1.0093 - 003 
5.7883 - 004 8.1260-004 
3.8709-004 6.1250 - 004 
1.9391 - 004 4.0979 - 004 
1.7939 - 001 2.0534 - 004 
0.0000 + ooo 1.7399 - 001 

ACKNOWLEDGMENT 

The authors are indebted to Ingeborg Olson for assistance with computer programs and 
numerical computations. 

REFERENCED 

1. R. GOLD and N. E. SCOF~ELD, Bull. Am. Phys. Sot. 2, 276 (1960). 
2. R. GOLD, Argonne National Laboratory Report No. ANL-6984 (1964). 
3. J. F. MOLLENAUER, University of California Radiation Laboratory Report No. UCRL-9748 

(1961). 
4. N. E. SCOFIELD, Paper (3-2), in “Applications of Computers to Nuclear and Radiochemistry,” 

NAS-NS 3107, OTS. Department of Commerce, Washington, DC. (1963). 
5. R. SANNA, K. O’BRIEN, M. ALBERG, S. ROTHENBERG, and J. MC LAUGHLIN, U.S.A.E.C. 

Health and Safety Laboratory Report No. HASL-162 (1964). 



ERROR ESTIMATES FOR ITERATIVE UNFOLDING 175 

6. B. S. J. DAVIES, Paper (4-3), in “Radiation Measurements in Nuclear Power.” Berkeley 
Nuclear Laboratories; The Institute of Physics and the Physical Society, London (1966). 

7. M. ALBERG, K. O’BRIEN, and J. MC LAUGHLIN, Nucl. Sci. Eng. 25, 303 (1966). 
8. D. MILLER, P. SCHLOSSER, J. BURT, D. D. GLOWER, and J. M. MC NEILLY, IEEE Trans. 

Nucl. Sci. NS-14, 245 (1967). 
9. W. N. MCELROY, S. BERG, and G. GIGAS, Nucl. Sci. Eng. 27, 533 (1967). 

10. R. GOLD and E. F. BENNETT, Nucl. Znstr. Methods 63, 285 (1968). 


